RDCH 702 Lecture 8: Accelerators and
Isotope Production
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Charged Particle Accelerators: Direct
Voltage

Use of electric fields to accelerate particles
First used in 1932 for protons
Cascade Rectifiers and Transformers
= Direct application of voltage between terminals
- Maximum voltage defined energy limit
= Use multiple stages of voltage doubling circuits

Still used as injectors for high energy accelerator and
neutron sources
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Van de Graaff Generator

o Electrostatic Generator
= All potential provide at one source
= Higher potential than direct voltage
o First built in 1929,
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Tandem Van de Graaff Accelerator

Negative ions (H") are accelerated towards positive

terminal

Inside terminal I§ns are stripped of electrons
Positive ions further accelerated tc‘)wards ground

Can couple more s¥¢

Proton energies 25-4
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_inear Accelerator

Repeated accelerations through small potentials

Connection of coaxial sections
Alternating voltage

lons accelerated at gap

First made in 1928

Range of cavities

Electron accelerators on similarysdQCiple lesoslosse:

Can use other accelerator ut as source
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Pulsed machines
Up to 20 GeV

Positron acceleration possible (at lower energies)
Used for electron scattering, photonuclear reactions, radiation

therapy, industrial processing
SLAC around 2 miles
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Proton Linacs

Protons and other positive ions have large
velocity increase with energy

Standing wave acceleration

Drift tubes need to increase In length
Acceleration at gap between tubes

Large energies (up to 800 MeV at LANSCE)

= Mesons
= Neutrons
= Spallation products



http://lansce.lanl.gov/

HILACS

 Heavy ion linear accelerator at LBL
o Construction similar to tandem Van de Graaffs
o Accelerate all types of heavy ions, up to U
= Energies in range of 10 MeV/amu
= Used In
->relativistic experiments
->nuclear structure
-—>high energy nuclear collisions
—>injectors



First built in 1930

Cyclotrons
Multiple acceleration by
potential

lons travel in spiral F

Alte[nation of “dee” potential §
accelerates particles

Obeys equations of motio

= massm

= charge g

= velocity V

= magnetic field B

. radlus R Magnetic field bends

V g B B path of charged particle.
- m j— J‘ j—
angular velocity 2 o \
2
« Can control energy by cicirc fld Qﬁ?
varying terms accelerates \ /
= R oft(an fixed, B canbe e |p——d
varie crossing.

il




Cyclotrons

Fixed Frequency

= accelerates chosen e/M
ratio

= different energies since
M dependent

Sector focused
= uyseful for heavier ions
= creates hill and valley
IN regions

Cyclotrons can be
combined with Linacs for
high energy
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Photon Sources

Continuous spectra of EM radiation is emitted when
relativistic electrons are in a curved path in a magnetic field

-> Relativistic velocity changes observed frequency due
to Doppler effect

* Lorentz factor (y)
> Time contraction also increase frequency by y
-> Forward directed radiation

can choose wavelength of photons 1 dt
useful for determining structure /= \/1_7 dr

= |IP, PES, EXAFS, XANES
Solid state physics
Reaction mechanisms
Perform many experiments simultaneously 0




XAS Setup
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Absorption

Spectroscopy (XANES)
Region between absorption edge and XANES EXAFS
start of EXAFS oscillations, up to 40 eV N
above edge
Absolute position of edge contains
orbitals, electronic configuration, and
site symmetry y
Extended X-ray Absorption Fine
Structure (EXAFS) Energy (eV)
Above absorption edge, photoelectrons
ray absorption

= Oscillations in absorption above (i = N Nitilk)e

edge x(k) ZJ: R’

= Oscillations used to determine
atomic number, distance, and

XANES and EXAFS

X-Ray Absorption Near Edge
information on oxidation state
Also contains information on vacant
created by absorption of x-ray
Backscattering photoelectrons effect x-

coordination number of nearest
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Bacteria EXAFS

Data

Fit
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EXAFS and Fourier transforms. Slight structural
differences can be seen.
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EXAFS Analysis

Data
—— Fit
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EXAFS Analysis
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Neutron Sources

Radioactive sources (%°Cf, reactions)
Accelerators

= 2H(d,n)*H

= 3H(d,n)*He

—>Neutron energy fast

= also (y,n) with “H or °Be
Alpha-neutron sources

= Pu-Be sources

Reactors

= specific design

= high amount of U
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Fission Process

Usually asymmetric mass sfa

= My/M, =1.4 for uranium and
plutonlum

= due to shell effects, magic numbers
- Heavy fragment peak near
A=132, Z=50, N=82

= Symmetric fission is suppressed by
at least two orders of magnitude
relative to asymmetric fission

Occurs In nuclear reactions

=  Competes with evaporation of
nucleons in region of high atg
numbers

Location of heavy peak in fission
remains constant for 233235 and 23°Pu

= position of light peak increases
2 peak are s for ? and Pu thermal
neutron in uced ISsion
Influence of neutron energy observe
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. F.ission yield distribution varies with
fissile isotope

« Heavier isotopes begin to demonstrate
symmetric fission

3 Both fission products at Z=50 f

Fission Process

Average masses of the light and heavy fragments as a function of the mass of the

144
142
140
138
136

1na
1o
108
106
104
102
100
98
96
94
92

Fm
e As mass of fissi ystem increases
- Location of heavty peak in fission
remains constan
u

position of light peak increases

fissioning system. From Flynn [10]
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Fig. 8. Schematic representation of mass yield distributions (nor-
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isotopes [4].
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Fission Process

Nucleus absorbs energy

: Excites and deforms
. Configuration “transition state” or *“saddle point”
Nuclear Coulomb energy decreases during deformation
: Nuclear surface energy increases
Saddle point key condlition
: rate of changd of Coulomb energy is equal to rate of change of nuclear surface energy
- Induces instab\lity that drives break up of nucleus
If nucleus deforms beyopd this point it is committed to fission
: Neck between frggments disappears
. Nucleus divides iNto two fragments at *““scission point.”

- two highly
Large Coulomb repulsion

arged, deformed fragments in,contact
celerates fragments to 90% f|nal kinetic energy within 10-% s
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Fig. 3.7 Potential energy as a function of deformation in a simple liquid-drop picture. The
fission barrier B;, the saddle point (critical deformation), and the scission point (separation

into two fragments) are indicated. The distortion of an initially spherical nucleus is schema-
tically shown beneath the potential-energy diagram.



Proton induced fission
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Figure 11-17. Fission mass distributions for >**Th(p, 1)

Energetics impact fragment
distribution

excitation energy of fissioning
system increases

= [Influence of ground
state shell structure of
fragments would
decrease

=  Fission mass
distributions shows
Increase in symmetric
fission
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Review Notes

e Describe accelerators
= | Inear
= Cyclotrons
= Synchrotrons
2> XANES and EXAFS

» Describe utilization of photons from
synchrotrons

* Provide example of neutron sources

Comment in blog
Respond to PDF quiz
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